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Abstract – In this paper, we establish the generalized 

Hyers-Ulam stability of a reciprocal-quadratic functional 

equation of the form 
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in intuitionistic fuzzy normed spaces. 
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I. INTRODUCTION 
   

Stability problem of a functional equation was first 

raised by S.M. Ulam [29] concerning the stability of group 

homomorphism. D.H. Hyers [9] gave a first affirmative 

partial answer to the question of Ulam for Banach spaces. 

Hyers’ theorem was generalized by T. Aoki [3] for 

additive mappings. In 1978, Th.M. Rassias [25] 

generalized Hyers’ theorem by obtaining a unique linear 

mapping near an approximate additive mapping by 

allowing the Cauchy difference operator 

( , ) ( ) - ( ) - ( )CDf x y f x y f x f y  to be controlled by

 p p
x y  . In 1982, J.M. Rassias [22] gave a further 

generalization of the result of D.H. Hyers and proved 

theorem using weaker conditions controlled by a product 

of different powers of norms. In 1994, a generalized and 

modified form of the theorem evolved by Th.M. Rassias 

was obtained by P. Gavruta [8] who replaced 

 p p
x y   by a general control function ( , )x y  

within the viable approach designed by Th.M. Rassias. 

This type of stability is called “Generalized Hyers-Ulam 

stability of functional equation”. The stability problems of 

several functional equations has been extensively 

investigated by a number of mathematicians and there are 

many interesting results concerning this problem (see [2], 

[4], [5], [7], [10], [13], [23] and references therein). 

The concept of fuzzy sets was first introduced by Zadeh 

[31] in 1965 which is a powerful tool for modelling 

uncertainty and vagueness in various applied problems 

arising in the field of science and engineering, e.g., 

population dynamics, chaos control, computer 

programming, nonlinear dynamical systems, fuzzy 

physics, nonlinear operators, statistical convergence, etc. 

For the last four decades, fuzzy theory has become very 

active area of research and a lot of developments have 

been made in the theory of fuzzy sets to find the fuzzy 

analogues of the classical set theory. The fuzzy topology 

[12] proves to be a very useful tool to deal with such 

situations where the use of classical theories breaks down. 

The concept of intuitionistic fuzzy norm (see [14], [17], 

[18], [19], [20], [21], [26]) is also useful to deal with the 

inexactness and vagueness arising in modelling. 

The generalized Hyers-Ulam stability of various 

functional equations in intuitionistic fuzzy normed space 

has been studied in ([15], [16], [27], [28], [30]). Saadati, 

Cho and Vahidi [27] introduced the notation of 

intuitionistic random normed spaces, and then by virtue of 

this notation to study the stability of a quartic functional 

equation in the setting of these spaces under arbitrary 

triangle norms. Mursaleen and Mohiuddine [16] linked 

two different disciplines, namely, the fuzzy spaces and 

functional equations. They also proved that the existence 

of a solution for any approximately cubic mapping implies 

the completeness of intuitionistic fuzzy normed spaces.  

K. Ravi and B.V. Senthil Kumar [24] investigated the 

generalized Hyers-Ulam stability for the reciprocal 

functional equation 

                          

( ) ( )
( )

( ) ( )

r x r y
r x y

r x r y
 


                     (1.1)   

where :r   is a mapping with 

as the space of 

non-zero real numbers and with the assumptions 

0,x y  ( ) ( ) 0r x r y   and ( ) 0r x  , for all , .x y   

The reciprocal function 
1

( )r x
x

 is a solution of the 

functional equation (1.1). 

In this paper, we establish the generalized Hyers-Ulam 

stability of a reciprocal-quadratic functional equation of 

the form 
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in intuitionistic fuzzy normed spaces. It is easy to see that 

the function
2

1
( )r x

x
 is a solution of (1.2). 

 

II. PRELIMINARIES 
 

In this Section, we recall some notations and basic 

definitions used throughout this paper. 

Definition 2.1. A binary operation :[0,1] [0,1] [0,1]     

is said to be a continuous t-norm if it satisfies the 

following conditions: 

(i)   is associative and commutative;  

(ii)  is continuous;      

(iii) 1a a  for all [0,1]a ;    

 (iv) a b c d   whenever a c  and b d  for each 

        , , , [0,1].a b c d   

Definition 2.2. A binary operation :[0,1] [0,1] [0,1]  

is said to be a continuous t-conorm if it satisfies the 

following conditions: 

(i)  is associative and commutative;  

(ii)   is continous;  

(iii) 0a a  for all [0,1]a ; 

(iv) a b c d    whenever a c  and b d  for each     

, , , [0,1]a b c d  . 

Using the notions of continous t-norm and t-conorm, 

Saadati and Park [26] introduced the concept of 

intuitionistic fuzzy normed space as follows: 

Definition 2.3. The five-tuple ( , , , , )X     is said to be 

an intuitionistic fuzzy normed space (for short, IFNS) if 

X is a vector space,   is a continuous t-norm,  is a 

continuous t-conorm, and ,  are fuzzy sets on (0, )X    

satisfying the following conditions for each ,x y X and 

, 0s t   

(i) ( , ) ( , ) 1x t x t   ;  

(ii) ( , ) 0x t  ;  

(iii) ( , ) 1x t  if and only if 0x  ;                        

(iv) ( , ) ,
t

x t x  


 
   

 
 for each 0  ;  

(v) ( , ) ( , ) ( , )x t y s x y t s      ;                 

(vi) ( , ) : (0, ) [0,1]x    is continuous;  

(vii) lim ( , ) 1
t

x t


 and
0

lim ( , ) 0
t

x t


 ;   

(viii) ( , ) 1x t  ;  

(ix) ( , ) 0x t  if and only if 0x  ;  

(x) ( , ) ,
t

x t x 


 
   

 
for each 0  ;  

(xi) ( , ) ( , ) ( , )x t y s x y t s      ;  

(xii) ( , ) : (0, ) [0,1]x    is continuous;  

(xiii) lim ( , ) 0
t

x t


 and
0

lim ( , ) 1
t

x t


 . 

In this case, ( , )  is called an intuitionistic fuzzy norm. 

Example 2.4. Let  ,X  be a normed space, a b ab 

and min{ ,1}a b a b    for all , [0,1]a b . For all x X

and every 0t  , consider 

if 0
( , ) ;

0 if 0

t
t

t xx t

t






 
 

 

and  

0
( , ) ;

0 0

x
if t

x t t x

if t






 




 

Then ( , , , , )X      is an IFNS. 

The concepts of convergence and Cauchy sequence in 

intuitionistic fuzzy normed space are studied in [26]. 

 

Let ( , , , , )X      be an IFNS. A sequence  kx x is 

said to be intuitionistic fuzzy convergent to L X  if, for 

every 0  , there exists 0k   such that 

 , 1kx L t     and  ,kx L t    for all 0k k . In 

this case, we write ( , ) lim kx L     or 
( , )

kx L
 

  as 

k  . 

Let ( , , , , )X      be an IFNS. A sequence  kx x  is 

said to be intuitionistic fuzzy Cauchy sequence if,     for 

every 0   and 0t  , there exists 0k   such that 

 , 1k lx x t     and  ,k lx x t    for all 0,k l k . 

An IFNS ( , , , , )X      is said to be complete if every 

intuitionistic fuzzy Cauchy sequence in intuitionistic fuzzy 

convergent in ( , , , , )X     . In this case ( , , )X   is called 

intuitionistic fuzzy Banach space. 

 

III. GENERALIZED HYERS-ULAM STABILITY OF 

EQUATION (1.2) 
 

Throughout this Section, let us assume that X  to be 

linear space and ( , , )   an intuitionistic fuzzy Banach 

Space. We also assume that 0, ( ) 0,x r x  , 2 0x y  , 

2 0, ( ) ( ) 0, ( ) ( ) 0x y r x r y r x r y    , 5 ( ) 5 ( )r x r y

8 ( ) ( ) 0r x r y   and 2 ( ) 2 ( ) 5 ( ) ( ) 0r x r y r x r y    for 

all , .x y X  

For the sake of convenience, we denote for a given 

mapping, :r X   the difference operator 

:rD X X   by 

( , ) ( 2 ) (2 )rD x y r x y r x y       

                     
2

( ) ( )[5 ( ) 5 ( ) 8 ( ) ( )]

[2 ( ) 2 ( ) 5 ( ) ( )]

r x r y r x r y r x r y

r x r y r x r y

 


 
                                 

for all , .x y X  

Theorem 3.1. Let : [0, )X X    be a function such 

that                                              
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 
0

( , ) 9 3 ,3n n n

n

x y x y 




                         (3.1)   

for all , .x y X  Let :r X  be a function such that 

 

 

lim ( , ), ( , ) 1

lim ( , ), ( , ) 0

r
t

r
t

D x y t x y

D x y t x y

 

 





 



 

                    (3.2) 

uniformly in .X X  

Then  ( ) ( , ) lim9 3n n

n
R x r x 


   for each x X  exists 

and defines a reciprocal-quadratic mapping :R X   

such that if for some 0,   0   and all , ,x y X  

 

 

( , ), ( , )

( , ), ( , ) 1

r

r

D x y x y

D x y x y

  

  

 


  

                (3.3) 

then 

9
( ) ( ), ( , )

4

9
( ) ( ), ( , ) 1 .

4

R x r x x x

R x r x x x


  


  

 
   

  


        

 

Also, the reciprocal-quadratic mapping R is unique such 

that 

9
lim ( ) ( ), ( , ) 1

2

9
lim ( ) ( ), ( , ) 0

2

n

n

t
R x r x x x

t
R x r x x x

 

 





 
   

  


       

 

uniformly in X. 

Proof. Given 0.   Using (3.2), we can find some 0 0t 

such that 

 

 

( , ), ( , ) 1

( , ), ( , )

r

r

D x y t x y

D x y t x y

  

  

  


 

                   (3.5) 

for all ,x y X and all 0 .t t  Substituting y x  in (3.5), 

we obtain 

9
9 (3 ) ( ), ( , ) 1

2

9
9 (3 ) ( ), ( , )

2

t
r x r x x x

t
r x r x x x

  

  

 
    

  


       

                 (3.6) 

for all ,x y X and all 0 .t t Now, replacing x  by 3x in 

(3.6), we get 

    

 

 

2
2 2

2
2 2

9
9 3 9 (3 ), (3 ,3 ) 1

2

9
9 3 9 (3 ), (3 ,3 )

2

t
r x r x x x

t
r x r x x x

  

  

 
    

  


  
   

  

       (3.7) 

for all ,x y X and all 0 .t t  Combining (3.6) and (3.7) 

yields, 

   
1

2 2 9
9 3 ( ), 9 3 ,3

2

k k k

k o

t
r x r x x x 



 
 

 
  

  2 2 9
9 3 9 (3 ), (3 ,3 )

2

t
r x r x x x 

 
  

 
          

     
9

9 (3 ) ( ), ( , ) (1 ) (1 ) 1
2

t
r x r x x x    

 
        

 
 

and  

   
1

2 2 9
9 3 ( ), 9 3 ,3

2

k k k

k o

t
r x r x x x 



 
 

 
  

  2 2 9
9 3 9 (3 ), (3 ,3 )

2

t
v r x r x x x
 

  
 

          

     
9

9 (3 ) ( ), ( , )
2

t
r x r x x x    

 
     

 
 

for all ,x y X and all 0 .t t Proceeding further and using 

induction on a positive integer n , we get 

   

   

   

1

0

1

0

9
9 3 ( ), 9 3 ,3 1

2

9
9 3 ( ), 9 3 ,3

2

n
n n k k k

k

n
n n k k k

k

t
r x r x x x

t
r x r x x x

  

  









 
    

  


       





    (3.8) 

for all ,x y X and all 0 .t t In order to prove the 

convergence of the sequence   9 3 ,n nr x letting 0t t  

and replacing ( , )x y  by  3 ,3m mx y  in (3.8), we find that 

for 0n m   

   

 

   

 

1
0

0

1
0

0

9 3 9 3 ,

19
9 3 ,3

2

9 3 9 3 ,

.9
9 3 ,3

2

n m n m m m

n
k m k m k m

k

n m n m m m

n
k m k m k m

k

r x r x

t
x x

r x r x

t
x x

 


 


 


  



 


  



 
 

   
 

  


  
    
  
  





  (3.9) 

The convergence of (3.1) and 

   
1 1

0

9 9
9 3 ,3 9 3 ,3

2 2

n m n
m k m k m k k k k

k k m

x x x x 
  

  

 

   

imply that for given 0   there is 0n   such that 

 
1

09
9 3 ,3 ,

2

m n
k k k

k m

t
x x 

 



  

for all 0m n  and all 0.n   From (3.9), we deduce that 

    9 3 9 3 ,m n m n m mr x r x     

     
1

0

0

9
9 3 9 3 , 9 3 ,3

2

n
m n m n m m m k m k m k

k

t
r x r x x x 


    



 
  

 


1    

and 

    9 3 9 3 ,m n m n m mv r x r x     

     
1

0

0

9
9 3 9 3 , 9 3 ,3

2

n
m n m n m m m k m k m k

k

t
r x r x x x 


    



 
  

 


  

for all 0m n  and all 0.n   Hence   9 3n nr x is a 

Cauchy sequence in .  Since  is an intuitionistic fuzzy 
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Banach space, the sequence    9 3n nr x converges to 

some ( ) .R x   Hence we can define a mapping 

:R X   such that  ( ) ( , ) lim9 3 ,n n

n
R x r x 


   

namely, for each 0,t  and ,x X  

  ( ) 9 3 , 1n nR x r x t    and   ( ) 9 3 , 0.n nR x r x t                         

Taking the limit n in (3.8), we see that the 

existence of (3.4) uniformly in .X  Now, let , .x y X  

Choose any fixed value of 0,t   and (0,1).   Since 

 lim9 3 ,3 0,n n n

n
x y


  there exists 1 0n n  such that 

 0 3 ,3
4 9

n n

n

t
t x y 


 for all 1.n n Hence for each 

1,n n we have 

 ( , ),RD x y t  

 (2 ) 9 3 (2 ) ,
4

n n t
R x y r x y
 

    
 

 

 ( 2 ) 9 3 ( 2 ) ,
4

n n t
R x y r x y
 
    
 

 

2

( ) ( ) 5 ( ) 5 ( ) 8 ( ) ( )

2 ( ) 2 ( ) 5 ( ) ( )

R x R y R x R y R x R y

R x R y R x R y



   
  




   
 

 

   

       

9 3 9 3

2 9 3 2 9 3 5 9 3 3

n n n n

n n n n n n n

r x r y

r x r y r x r y


     
  

     

          5 9 3 5 9 3 8 9 3 3 ,
4

n n n n n n n t
r x r y r x r y

          
 

                               3 ,3 ,
4 9

n n

r n

t
D x y
 

  
 

             (3.10) 

and also 

 3 ,3 ,
4 9

n n

r n

t
D x y
 
 

 
 

                    03 ,3 , 3 ,3 .n n n n

rD x y t x y           (3.11) 

Letting n in (3.10) and using (3.5), (3.11), we get 

 ( , ), 1RD x y t    for all 0t   and (0,1).   

Similarly, we obtain 

 ( , )RD x y   for all 0t   and (0,1).   It follows that 

      ( , ), 1RD x y t        and          ( , ), 0,RD x y t   

for all 0.t   Therefore R  satisfies (1.2), which shows 

that R is reciprocal-quadratic mapping. Next, suppose that 

for some positive   and   (3.3) holds and 

 
1

0

1
( , ) 9 3 ,3 ,

2

n
k k k

n

k

x y x y 




   

for all , .x y X  By similar argument as in the beginning 

of the proof we can deduce from (3.3) 

   

   

1

0

1

0

9
9 3 ( ), 9 3 ,3

4

9
9 3 ( ), 9 3 ,3 1 ,

4

n
n n k k k

k

n
n n k k k

k

r x r x x y

r x r x x y


  


  









 
   

  


        





  (3.12)                          

for all positive integers .n  For 0s   we have 

 

     
 

     

( ) ( ), ( , )

9 3 ( ), ( , ) ( ) 9 3 ,

( ) ( ), ( , )

( ) 9 3 , 9 3 ( ), ( , ) .

n

n n n n

n

n

n n n n

n

R x r x x x s

r x r x x x R x r x s

R x r x x x s

R x r x s r x r x x x

 

  

 

  

  


    



  


    

  

                                                                                    (3.13)          

Combining (3.12), (3.13) and using the fact that 

  

  

lim ( ) 9 3 , 1

lim ( ) 9 3 , 0,

n n

n

n n

n

R x r x s

R x r x s









 



  


 

we obtain 

 

 

( ) ( ), ( , )

( ) ( ), ( , ) 1 ,

n

n

R x r x x x s

R x r x x x s

  

  

   


    

 

for sufficiently large .n  From the (upper-semi) continuity 

of real functions ( ( ) ( ), )R x r x   and ( ( ) ( ), ),R x r x    we 

see that 

9
( ) ( ), ( , )

4

9
( ) ( ), ( , ) 1 .

4

R x f x x x s

R x f x x x s


  


  

 
    

  


         

 

Taking the limit ,s  we get 

9
( ) ( ), ( , )

4

9
( ) ( ), ( , ) 1 .

4

R x f x x x

R x f x x x


  


  

 
   

  


        

 

It remains to prove the uniqueness of .R  Let R be 

another reciprocal-quadratic mapping satisfying (3.4). 

Choose any fixed value of 0.c   Given 0,   there is 

some 0 0t   such that (3.4) for R and R  

9
( ) ( ), ( , ) 1 ,

4

9
( ) ( ), ( , ) 1 ,

4

9
( ) ( ), ( , ) ,

4

9
( ) ( ), ( , )

4

t
R x r x x x

t
R x r x x x

t
R x r x x x

t
R x r x x x

  

  

  

  

 
    

  
 

     
  


      


        

 

for all x X and all 0 .t t  For some ,x X  we can find 

some integer 0n  such that 

                        0 9 3 ,3 ,
2

k k k

k n

c
t x x





     for all  𝑛 ≥ 𝑛0. 

Since  
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 9 3 ,3k k k

k n

x x




  

         9 9 3 3 ,3 3n k n k n n k n n

k n

x x


  



   

           
0

9 9 3 3 ,3 3 9 3 ,3 ,n m m m m m n n n

m

x x x x 




   

we have 

 ( ) ( ),R x R x c   

   ( ) 9 3 , 9 3 ( ),
2 2

n n n nc c
R x r x r x R x 
   

      
   

 

       3 3 , 3 3 ,
2 9 2 9

n n n n

n n

c c
R x r x r x R x 
   

      
    

     03 3 , 9 3 ,3
9

n n k k k

n
k n

t
R x r x x x 





 
  

 
  

             03 3 , 9 3 ,3
9

n n k k k

n
k n

t
r x R x x x 





 
  

 


 

      03 3 , 3 ,3n n n nR x r x t x x    

                    03 3 , 3 ,3 1n n n nr x R x t x x       

and similarly  

 ( ) ( ),R x R x c   

   ( ) 9 3 , 9 3 ( ),
2 2

n n n nc c
R x r x r x R x 
   

      
   

 

       3 3 , 3 3 ,
2 9 2 9

n n n n

n n

c c
R x r x r x R x 
   

      
    

     03 3 , 9 3 ,3
9

n n k k k

n
k n

t
R x r x x x 





 
  

 
  

                     03 3 , 9 3 ,3
9

n n k k k

n
k n

t
r x R x x x 





 
  

 


      03 3 , 3 ,3n n n nR x r x t x x    

                    03 3 , 3 ,3 .n n n nr x R x t x x      

It follows that 

 ( ) ( ), 1R x R x c     and       ( ) ( ), 0R x R x c         

for all 0.c   Hence ( ) ( )R x R x  for all ,x X  which 

completes the proof of the theorem. 

Corollary 3.2. Let :r X Y  be a function such that for 

all 1 0, 2c p    

  
  

1

1

lim ( , ), 1

lim ( , ), 0,

p p

r
t

p p

r
t

D x y tc x y

D x y tc x y









 


 


 

uniformly in .X X  Then there exists a unique 

reciprocal-quadratic mapping :R X   such that 

1

2

1

2

9
lim ( ) ( ), 1

1 3

9
lim ( ) ( ), 0,

1 3

p

pt

p

pt

c t x
R x r x

c t x
R x r x









 
  

    


  
       

 

uniformly in .X  

 

Proof. The proof is obtained by considering 

 1( , ) ,
p p

x y c x y    for all ,x y X  in Theorem 3.1. 

Corollary 3.3. Let :r X   be a function and suppose 

that there exist real numbers ,a b  such that 

2.a b      If there exists 2 0c   such that 

 

 

2

2

lim ( , ), 1

lim ( , ), 0,

a b

r
t

a b

r
t

D x y tc x y

D x y tc x y













 


 

uniformly in .X X  Then there exists a unique 

reciprocal-quadratic mapping :R X   such that 

 

 

2

2

2

2

9
lim ( ) ( ), 1

2 1 3

9
lim ( ) ( ), 0,

2 1 3

t

t

c t x
R x r x

c t x
R x r x

















 
  

  
  


  
   
    

 

uniformly in .X  

Proof.  It is easy to prove the required results in the 

Corollary by taking 
2( , ) ,

a b
x y c x y   for all ,x y X  

in Theorem 3.1. 

Corollary 3.4. Let 3 0c   and 1   be real numbers, 

and :r X   be a function such that 

   
   

2 2

3

2 2

3

lim ( , ), 1

lim ( , ), 0,

r
t

r
t

D x y tc x y x y

D x y tc x y x y

   

   









  


  


 

uniformly in .X X  Then there exists a unique 

reciprocal-quadratic mapping :R X   such that 

 

 

2

3

2 2

2

3

2 2

27
lim ( ) ( ), 1

2 1 3

27
lim ( ) ( ), 0,

2 1 3

t

t

c t x
R x r x

c t x
R x r x

















 
  

  
  


  
   
    

 

uniformly in .X  

Proof. The proof is analogous to the proof of Theorem 

3.1, by choosing   2 2

3( , ) ,x y c x y x y
   

     

for all , .x y X  
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