
  

  

Copyright © 2017 IJASM, All right reserved 

12 

International Journal of Applied Science and Mathematics 

Volume 4, Issue 1, ISSN (Online): 2394-2894 

Numerical Solutions of a Class of Nonlinear Ordinary 

Differential Equations by the Differential Transform and 

Adomian Methods 
 

Paul Tchoua1*, Benedict I. Ita2 
1Department of Mathematics and Computer Science, University of Ngaoundere Cameroon.  

2Department of Pure and Applied Chemistry, University of Calabar, Calabar Cross River State, Nigeria. 

 
Date of publication (dd/mm/yyyy): 22/02/2017 

 

Abstract – In this paper Differential Transform Method 

(DTM) and Adomian Decomposition Method are used to 

solve a class of nonlinear differential equations of second 

order. This method can be applied to many types of liner 

and nonlinear ordinary differential equations to solve 

approximately and in some cases give the exact analytical 

solutions. It reduces the size of computational work while 

still providing the solutions in terms of series with the 

convergence rate. Some examples are also given to 

buttress our points. 
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I. INTRODUCTION 
 

The nonlinear differential equations are not in general 

easy to tackle and to be solved analytically. They are 

generally solved by numerical approximating 

procedures. The solutions are just known 

approximately. 

A class of new methods is now developed which can 

enable us to have analytical solutions or any solution 

for an arbitrary order of accuracy of some nonlinear 

problem. The differential transform method and the 

reduced differential transform method are recent 

efficient methods that can be applied in solving 

nonlinear differential equations. 

These equations arise in the modeling of different 

natural phenomena in biology, fluid mechanics, 

chemistry and so on. These equations can be solved 

numerically with some level of accuracy, but it is 

always very difficult to obtain analytical solutions. It is 

therefore very important to develop very efficient 

schemes capable of giving very accurate solutions of 

such nonlinear problem. In the literature one can find 

some numerical techniques with this aim such as 

wavelet-galerkin- method (WGM); lagrange-

interpolation method (LIM); Adomain Decomposition 

Method (ADM). 

Taylor Polynomial Method. Homotopy perturbation 

Method. Most of these methods are specific to some 

classes of equations and as such no general 

methodology can be found in computing the solutions.  

We consider the following class of ordinary differential 

equations of the second order: 

𝑑2𝑢

𝑑𝑡2
+ 𝐹(𝑈) = 0                                                      (1)

𝑈(0) = 𝑎; 𝑈(0) = 𝛽                                                (2)
 

The initial value problem(1) - (2) is labeledproblem 

(P). We note that many useful mathematical laws in 

natural sciences are in this form. In equation (1) F is 

analytic in an open domain D of R containing the origin 

0 and satisfying 

𝐹(0) = 0(3) 

We use the differential transform method to give 

approximate solutions to the problem (P). we consider 

for applications the class of function 

𝐹(𝑢) =
𝑢𝑘

(1 + 𝑢2)𝑎
(4) 

𝑘 being an integer 𝛼 a positive real. Equation (4) shall 

be implemented for 𝑘 =  1,2,3 and 

𝛼 = 1;  𝛼 =
1

2
with𝐷 = {𝑥 ∈ 𝑅/|𝑥| < 1}(5) 

We shall prove that for this particular case there 

exists a global and unique solution which remains 

entirely in 𝐷 if 𝑈(0) is in 𝐷. 

We use the following analytical expansion in D. 
𝑢𝑘

(1 + 𝑢2)𝑎
= 𝑢𝑘 (∑ (−1)𝑝

∞

𝑝=0
𝑢2𝑝)     𝛼 = 1     (6) 

For the solution out of D not its boundary we set 

𝑣 =
1

𝑢
, |𝑢| > 1 

and apply the expansion (6) to get 𝑢 

𝑔(𝑣) =
𝑣2−𝑘

1+𝑣2     (7) 

Remark 

Let us mention that the problem could be solved 

without using the expansion (6) which is even easier but 

we must find by using a software ofsymbolic 

calculation evaluate
𝑑𝑘𝐹(𝑈)

𝑑𝑡𝑘  it is sufficient to set 𝑢(𝑡) =

∑ 𝑎𝑝𝑡𝑝𝑁
𝑝=0 for truncatedvalue of order 𝑁. We have used 

this approach in our calculation using the software 

MATLAB. Let us now present the main ideas of the 

differential transform method (DTM). 
 

II. ELEMENT ON THE DIFFERENTIAL 

TRANSFORM METHOD 
 

Following the work in [1] and [2] the initial function 

𝑢(𝑡) is supposed analytic in the domain D. We defined 

the differential transform at point to t0 be 𝑈(𝑘) or some 

time just denoted Uk. 

By 

𝑈𝑘 =
1

𝑘!
[

𝑑𝑘𝑢(𝑡)

𝑑𝑡𝑘 ]
𝑡=𝑡0

    (8) 

The following properties can be easily computed 

from the definition 
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𝑃1: 𝑤(𝑡) = 𝑢(𝑡) ∙ 𝑣(𝑡) 

𝑊(𝑘) = ∑ 𝑈𝑙−𝑉𝑘−1

𝑘

𝑙=0
 

𝑃2: 𝑤(𝑡) = α𝑢(𝑡) ∙ 𝛽𝑣(𝑡) 
𝑊(𝑘) = 𝛼𝑈𝑘 + 𝛽𝑉𝑘 

𝑃3: 𝑤(𝑡) = ∫ 𝑣1(𝑠)𝑣2(𝑠)𝑑𝑠
1

0

 

𝑊(𝑘) =
1

𝑘
∑ 𝑉1𝑙𝑉2𝑘−𝑙−1

𝑘−1

𝑙=𝑂
 

𝑃4: 𝑤(𝑡) = 𝑢𝑚(𝑡) 
𝑊𝑘 = ∑ 𝑈(𝐼)𝑈𝑚−1(𝑘 − 1)𝑘

𝑙=0 This can be treated Up 

being the notation for the (DTM) of 𝑢𝑝(𝑡). The inverse 

formula of the (DTM) of 𝑊(𝑘) is given by 

𝑢(𝑡) = ∑ 𝑈𝑘𝑡𝑘
∞

𝑘=0
(9) 

here we have taken to = 0. 

For the details see [6]; [7] and [8]. 

 

III. DIFFERENTIAL TRANSFORM OF 

EQUATION (1) 
 

The equation (1) can be transformed into the 

following equivalent integral equation. 
𝑑𝑢

𝑑𝑡
= ∫ 𝐹(𝑢)(𝑠)𝑑𝑠 =

𝑡

0
𝛽       (10) 

B being given by the initial condition (2). We use the 

following elementary calculations to compute 𝑈𝑘 

𝑑

𝑑𝑥
(

𝑥

1 + 𝑥2
) = −

𝑥2 − 1

(1 + 𝑥2)2
= 𝐹(𝑥); 𝐹(0) = 1 

 

𝑑

𝑑𝑥
(

𝑥2 − 1

(1 + 𝑥2)2
) = −2

𝑥

(1 + 𝑥2)3
(𝑥2 − 3)

= −2 ∙ 0𝑥
𝑥2 − 3 ∙ 0

(𝑥2 − 1 ∙ 0)
= −𝐹′(𝑥); 𝐹′(0)

= 0 

𝑑

𝑑𝑡
(−2

𝑥

(1 + 𝑥2)3
(𝑥2 − 3)) =

6

(1 + 𝑥2)4
(𝑥4 − 6𝑥2 + 1)

= −𝐹′′(𝑥); 𝐹′′(0) = −6 

and using the formula from equation (1) 

𝑑2𝑢

𝑑𝑡2
+ 𝐹(𝑈) = 0 

we have the following 

𝑑2𝑢

𝑑𝑡2
= −𝐹(𝑈)(11𝑎) 

𝑑2𝑢

𝑑𝑡2
= −𝐹(𝑢)

𝑑𝑢

𝑑𝑡
(11𝑏) 

𝑑2𝑢

𝑑𝑡2
= −𝐹′(𝑢) (

𝑑𝑢

𝑑𝑡
)

2

− 𝐹(𝑢)
𝑑²𝑢

𝑑𝑡²
 

It follows from the assumption (3) that 

𝑑²𝑢

𝑑𝑡²
(0) = 0; 

𝑑²𝑢

𝑑𝑡²
(0) = −𝛼; 

𝑑2𝑢(0)

𝑑𝑡2
= 0 

We can then deduce the following values 

𝑈(0) = 𝛼                               (12𝑎) 
𝑈(1) = 𝛽                               (12𝑏) 
𝑈(2) = 0                               (12𝑐) 

𝑈(3) =
−𝛼

6
(12𝑑) 

𝑈(4) = 0                               (12𝑒) 

It follows from these calculations for 𝛼 =  0 that the 

unique stationary solution is also zero by the (DTM) 

and all the coefficients being zero. We suppose now 

that the solution is not trivial i.e.  𝛼 ≠ 0 . Note also that 

if 𝛽 ≠ 0 for 𝛼 =  0 the problem has no solution taking 

𝛼 ≠ 0, then 

𝑈(0) = 𝛼                                                                              
𝑈(1) = 𝛽                                                                              

𝑈(2) = −𝐹 (𝛼) 2⁄  

𝑈(3) = −𝐹 (𝛼)𝛽 6⁄  

𝑈(4) = −𝐹′(𝛼)(𝑈(1))
2

− 2𝐹(𝛼)𝑈(2) 
 

General Differential Transform for the 

Solution 𝑢(𝑡) 
Using the relation given by properties P3 and relation 

(6) 

(𝑘 − 1)𝑈𝑘−1 +
1

4
∑ 𝑈(1)𝑈(𝑘 − 𝐼 − 1)

𝑘−1

𝐼=0
= 0      (13) 

using some finite terms in p yield some approximation 

of the Uk . Let us choose p = 1, we have two terms 

obtained as 

(𝑘 − 1)𝑈𝑘−1 +
1

4
𝑈𝑘 − ∑ 𝑈(1)𝑈(𝑘 − 𝐼 − 1)

𝑘−1

𝐼=0

= 0    (14) 

𝑘 = 1 ∙ 𝑈2 = 𝛼2 −
𝛽

2
 

We can note here that even for k = 1, the 

approximation is good at first order if p = 0, otherwise 

the approximation is not good. We can then evaluate the 

Uk for k = 2, 3, 4 …….. 

The values given in (14) are the exact solution. 

Equation (6) gives approximate solution since 

thefunction F(u) or g(v) are approximated. In our 

numerical evaluation we used thevery general approach 

which just take into consideration thetruncated value of 

u (t). 

 

4. NUMERICAL SOLUTION BY THE RUNGE-

KUTTA OF ORDER 4 
 

The solution is computed using the Matlab software. The 

second order differential équation is transformed into a first 

order system and then solved by the Runge-Kutta of order 

4. This solution has been obtained by the Runge-Kutta of 

order 4. The solutions given by the two methods start at the 

same point and are very similar in function of the order of 

the truncated function in the (DTM) see the graph below: 

 

V. NUMERICAL RESULTS BY THE REDUCED 

DIFFERENTIAL TRANSFORM METHOD 
 

We consider the truncated formula of the RDTM of order 

4 see Fig. 1 below 
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Fig. 1. 

 

We have truncated the DTM at order 4. The calculations 

are very huge although we use Matlab truncated of order n 

arbitrary can be done and the curves must be sufficiently 

close. 

 

VI. EVALUATION PROCEDURE FOR THE 

COEFFICIENTS OF THE TRANSFORMED 

FUNCTION 
 

To evaluate the coefficients of our solution deduced by 

the differential transform method, we use the equation 
𝑑2𝑢

𝑑𝑡2 + 𝐹(𝑢) = 0withthe initial values 

𝑢(0) = 𝛼        (15) 

𝑢′(0) = 𝛽           (16) 

We apply the transform operator to the members of 

equations (15) using the linearity of the operator and the 

property P1 we have for any 𝑘 ∈  𝑁, the relation: 
(𝑘 = 2)!

𝑘!
𝑈(𝑘 + 2) + 𝑀𝑘𝐹(𝑈) = 0 

Since u is unknown, the use of the relation shall be done 

carefully. Using a truncation of the solution at order N i.e. 

we take 𝑢(𝑥) = ∑ 𝑎𝑘𝑥𝑘𝑁
𝑘=0 ; recalling also that the 𝑢(𝑘) =

1

𝑘!
[

𝑑𝑘𝑢

𝑑𝑡𝑘]
𝑡=𝑡0

 we can deduce the following relation 

2𝑈(2) + 𝐹(𝑈(0)) = 0                             (𝑖) 

6𝑈(3) + 𝑀1𝐹(𝑢) = 0                               (𝑖𝑖) 
In the second equation U(0), U(1), U(2) are known but 

M1F can be obtained as U(k) 𝑘 ≥  3in a nonlinear way. 

Let us get 𝑔(𝑡) = 𝐹(𝑢(𝑡)) = ∑ 𝑎𝑘𝑡𝑘𝑁
𝑘=𝑂 by Taylor 

expansion about 0 the 𝑎𝑘 = 𝑎𝑘(𝑎0, 𝑎1, … , 𝑎𝑁); 𝑘 =
0,1, … , 𝑁 

We can then evaluate successively he coefficients U(k) 

and solving the equations in the form (i) and (ii). For n = 4 

we obtain the following relations. 

 

𝑔(𝑡)

=
𝑎1

(1 + 𝑎0
2)

+ (𝑎1 − 2 ∗ 𝑎0
2/(1 + 𝑎0

2) ∗ 𝑎1)/(1 + 𝑎0
2)𝑥

+ (𝑎2 − 𝑎1 (1 + 𝑎0
2) ∗ (2 ∗ 𝑎0 ∗ 𝑎2 ∗ 𝑎0

2 + 2 ∙ 𝑎)⁄ ) 

 

The nottions are those of MATLAB or OCTAVE. 

We can then deduce the different values. We observe that 

the first coefficient depend only on 𝑎0 =  𝐹(𝑈 (0)), the 

second on ao and a1 and so on. 

We also use the remark that: 

The coefficient of xk in the right hand side is 

1

𝑘!

𝑑𝑘𝐹

𝑑𝑡𝑘
(𝑢(0)) 

Let us evaluate the coefficient for our examplewith 

𝐹(𝑢) =
𝑢

1+𝑢2 the solution for any F analytic can be carried 

out, 𝑢(0) = ℎ, 𝑢′(0) = 0 

 

REMARK 
 

In a forthcoming paper other cases are going to be treated. 

 

CONCLUSION 
 

In this paper we have proved that the Differential 

Transform Method can be used successfully to approximate 

with very high accuracy nonlinear ordinary differential 

equations. We have indicated some technical procedures 

that can be used with the symbolic software for our 

computation. The procedure is very general to be used in a 

very high class of examples and application. Many physical 

models being in this form. 

 

II. Adomian Decomposition Method in solving a class of 

Nonlinear Differential Equation 

2.1 The decomposition method is one of the new 

numerical method developed to solve with arbitrary 

higher order of accuracy. The Adomain method has 

been introduced and developed by Adomain. It is very 

efficient for obtaining closed form and numerical 

approximation of a large class of ordinary, partial and 

even algebraic equations arising from problem in 

natural sciences and engineering. 

We consider the following class of ordinary 

differential equations of second order 

𝑑2𝑢

𝑑𝑡2
+ 𝐹(𝑢) = 0                                           (1) 

𝑢(𝑂) = 𝛼; 𝑢′(0) = 𝛽                                   (2) 

The problem (1) and (2) has been considered recently 

by (Tchoua and Ita 2012) where they gave a numerical 

solution of this class of problem by the differential 

reduced method. 

In this paper the Adomian is used to solve the same 

problem and the results compared. Let us present the 

general structure of the Adomain method. 

2.2 The Adomian Decomposition Method 

Our equation can be written in the form 

𝐿𝑢 − 𝑁(𝑢) = 𝑓                                   (3) 
where L is a linear operator and N a nonlinear operator. 

The linear operator is assumed invertible. The Adomian 
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method consist of approximating the solutions of (1) - 

(2) as an infinite series 

𝑢 = ∑ 𝑢𝑛

∞

𝑛=0
(4) 

 

and expressing the nonlinear operator in the form 

𝑁(𝑦) = ∑ 𝐴𝑛

∞

𝑛=0
 

When 𝐴𝑛 are the adomain polynomials of 𝑦0, 𝑦1 … 𝑦𝑛 …  
as defined by (Adomain 1994) where 

 

𝐴𝑛 =
1

𝑛!

𝑑

𝑑𝜆𝑛
[𝑁 (∑ 𝜆𝑖

∞

𝑖=0
𝑢𝑖)]   𝑖 = 0,1,2 …            (5) 

 

Applying the inverse of the linear operator L -1 to the 

members of after substituting (4) and (5) we obtain the 

following relations 

∑ 𝑢𝑛

∞

𝑛=0
− 𝐿−1 (∑ 𝐴𝑛

∞

𝑛=0
) = 𝐿−1(𝑓)(6) 

 

We can deduce the following iterative relations: 

 

𝑢0 = 𝐿−1𝑓 

𝑢𝑛+1 = 𝐿−1((𝐴𝑛))(7) 

We apply to the case 

2.3 Application 

Example 1 

𝑁(𝑢) =
𝑢

1 + 𝑢2
 

 

𝐴0 = 𝑁(𝑈0) 

𝐴1 = 𝑈1𝑁(𝑈0) 

𝐴2 = 𝑈2𝑁(𝑈0) +
𝑢1

2

2
𝑁′′(𝑈0) 

𝐴3 = 𝑈3𝑁(𝑈0) + 𝑈1𝑈2𝑁′′(𝑈0)
𝑢1

2

6
𝑁′′′(𝑈0)(8) 

 

The coefficients 𝐴𝑛 can be estimated recursively. The 

general formula can be deduced from the formula 

established by Abbaoul and Cherruault (1994). 

𝐴𝑛 = ∑ 𝑁(𝑘)(𝑦0)
𝑘=1

[∑ 𝑦𝑝1, 𝑦𝑝2 … 𝑦𝑝𝑛𝑝1+𝑝2…𝑝3
]

𝑝1! 𝑝2! … 𝑝𝑛!
, 𝑛 ≥ 1 

We can then deduce the value of 

𝑦𝑛 = ∫ ∫ 𝐴𝑛𝑑𝑟𝑑𝑡
𝑟

0

𝑡

0

 

We choose in our investigation the case p = 0 in that 

case and 

−𝑁(𝑢) =
𝑢

1 + 𝑢2
 

Solution 

𝑁′(𝑢) =
1

1 + 𝑢2
− 2

𝑢2

(1 + 𝑢2)2
;  

𝑑2

𝑑𝑢2
[

𝑢

1 + 𝑢2
] = [8

𝑢3

(1 + 𝑢2)2
− 6

𝑢

(1 + 𝑢2)2
] = 𝑁′(𝑢)(10) 

𝑑3

𝑑𝑢2
[

𝑢

1 + 𝑢2
] = [48

𝑢2

(1 + 𝑢2)3
− 48

𝑢4

(1 + 𝑢2)4

−
6

(1 + 𝑢2)2
] =  𝑁(3)(𝑢) 

We can evaluate the derivative of all orders using the 

symbolic computing software MATLAB and 

SCIENTIFIC WORKPLACE 

𝑦0 = ℎ                                                                                  

𝑦1 = ℎ
𝑡2

2
= 𝑏1𝑡2 

𝐴𝑖 = 𝑦𝑖𝑁(𝑦0) =
ℎ𝑡2

2
[

1 − ℎ2

(1 + ℎ2)2
] 

𝑦2(𝑡) = ∫ ∫ 𝐴1𝑑𝜏 𝑑𝑠
𝜏

0

=
ℎ2

2
[

1 − ℎ2

(1 + ℎ2)2
]

𝑡

0

𝑡2

12

=
ℎ2

24
[

1 − ℎ2

(1 + ℎ2)2
] 𝑡4 = 𝑏2𝑡4 

𝐴1 = 𝑦2𝑁′(𝑦0) +
𝑦1

2

2
𝑁′′(𝑦0)

= 𝑦2(𝑡) [
1 − ℎ2

(1 + ℎ2)2
]

+
𝑦1(𝑡) ∙ 𝑦1(𝑡)

2
[8

ℎ3

(1 + ℎ2)3

− 6
ℎ

(1 + ℎ2)2
] 

We can then deduce the value of 𝑦3 

𝑦3 = ∫ ∫ 𝐴2

𝜏

0

(𝑠)𝑑𝑠 𝑑𝜏
𝑡

0

=
1

30
𝑏2𝑡6 +

1

30
𝑏1

2𝑡6 

We can then evaluate the solution third order truncation  

𝑢(𝑡) = 𝑦0(𝑡) + 𝑦1(𝑡) + 𝑦2(𝑡) + 𝑦3(𝑡) 

Example 2 

Consider the equation 
𝑑𝑢

𝑑𝑡
+ 𝑔(𝑡, 𝑢)

= 0                                                                              
𝑢(0)
= ℎ;                                                                                             

where 

𝑔(𝑡, 𝑢) = ∫ ℎ𝑝(𝑠)
𝑡

0

𝑑𝑠; 𝑝 > 0 

And arbitrary positive real. This equation is equivalent to 

the second order differential equation 

𝑑2𝑢

𝑑𝑡2
+ 𝑢𝑝 = 0                                                                                  

𝑢(0) = ℎ; 𝑢′(0)
= 0                                                                       

Solution by Adomian Decomposition Method 

The equation can be put in the form 

𝐿𝑢 − 𝑁(𝑢)
= 0                                                                                 

L is the linear part and N(u) is the nonlinear part 

𝑁(𝑢) = −𝑢𝑝 

𝑁(𝑢) = ∑ 𝐴𝑖

∞

𝑖=0
 

the 𝐴𝑖 being evaluated according to the equation (9) 

𝑢(𝑡) = 𝑦0(𝑡) + ∑ 𝑦0(𝑡)
∞

𝑖=0
 

−𝐴0 = 𝑦0
𝑝
 

−𝐴1 = 𝑝𝑦0
𝑝−1

𝑦1 

−𝐴2 =
𝑝(𝑝 − 1)

2
𝑦0

𝑝−2
𝑦1

2 + 𝑝𝑦0
𝑝−1

𝑦2 
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−𝐴3 =
𝑝(𝑝 − 1)(𝑝 − 2)

6
𝑦0

𝑝−3
𝑦1

3 + 𝑝(𝑝 − 1)𝑦0
𝑝−2

𝑦1𝑦2

+ 𝑝𝑦0
𝑝−1

𝑦3 

The values of y1 given by the formula (10). We have the 

following: 

𝑦0(𝑡) = ℎ                                                                                     

𝑦1(𝑡) =
ℎ

2
𝑡2 

𝑦2(𝑡) =
𝑝ℎ𝑝−1𝑡4

12
 

We can get more terms using the equation (9). 

The solution has been obtained in Tchoua and Ita (2012) 

for the example 1, for the differential transform method. 

 

CONCLUSION 
 

We have investigated some numerical methods of solving 

ODE of same class which yield analytical solutions for 

arbitrary order. 

We have solved a class of differential equation by the 

Differential Transform Method and the Adomain 

Decomposition Method. It appears that these methods are 

very accurate for small values of the variable but for large 

values we shall adapt the method by changing the point of 

evaluation of the coefficients. They also appear as very 

powerful in solving nonlinear ordinary differential 

equations. 
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