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Abstract – Numerical solutions for systems of nonlinear 

equations have always appealed greatly to people in scientific 

computation fields. In this paper, a new Newton-type method 

with third-order convergence for solving systems of 

nonlinear equations is proposed. Its cubic convergence and 

error equation are proved theoretically, and its application to 

systems of nonlinear equations and some boundary-value 

problems of nonlinear ODEs are demonstrated as well in the 

numerical examples to show the efficiency and feasibility of 

the iterative method. 
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I. INTRODUCTION 
   

For a system of nonlinear equations as follows: 

1 2( ) ( ( ), ( ), , ( )) 0T

nF x f x f x f x  ,                         (1) 

where 1 2( , , , )T

nx x x x  , : n nF D R R   is a given 

nonlinear vector function, and ( 1,2, , ) :if i n   

nD R R  is a nonlinear mapping. 

Constructing an efficiently iterative method to 

approximate the root of the system of nonlinear equations 

(1) is a typical and important issue in scientific 

computation and engineering fields. One of the most 

widely used numerical iterative methods for solving 

nonlinear equations is probably classic Newton’s method 

as follows (see [1-3]): 
1

1 ( ) ( ), 0,1,2, ,n n n nx x F x F x n


                        (2) 

which converges quadratically under the conditions that 

the function F  is continuously differentiable and 
0x is a 

good initial guess of the root. 

In recent years, in order to improve the order of 

convergence, a few two-step variants of Newton’s method 

with cubic convergence have been proposed in some 

literature [4-12] for solving multivariable nonlinear 

equations. 

M.T. Darvish and A.Barati [4] used Adomian 

decomposition method for a system of nonlinear equations 

to construct a third-order Newton-type scheme: 
1

1

1

( ) ( )
,

( ) [ ( ) ( )]

n n n n

n n n n n

y x F x F x

x x F x F x F y







  


  
                       (3) 

where ( )nF x  is the Jacobian matrix of the function F . 

Frontini and Sormani[5] presented a third-order method 

using a numerical quadrature formulae to solve systems of 

nonlinear equations as follows: 
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1

1

1

( ) ( )

1 1
( ( ) ( )) ( )
2 2

n n n n

n n n n n

y x F x F x

x x F x F y F x







  



   


.                   (4) 

M.A. Noor and M. Wasteem [6] used two-point Newton-

Cotes formula to develop a cubic convergence method: 
1

1

1

( ) ( )

21
[ ( ) 3 ( )] ( )

4 3

n n n n

n n
n n n n

y x F x F x

x y
x x F x F F x







  

 

   


.          (5) 

These are two-step Newton-type methods to achieve 

cubic convergence to approximate the root of a system of 

nonlinear equations. 

In this paper, we propose a new two-step Newton’s 

method with third-order convergence by quadrature 

formulae in section 2, various numerical examples using 

this new method for solving systems of nonlinear 

equations and boundary-value problems of nonlinear 

ODEs in section 3 to show the consistence to the 

theoretical analysis, and finally make conclusions in 

section 4. 

 

II. THE METHOD AND ITS CONVERGENCE 
 

Consider the multivariable Taylor’s expansion for 

( )F x  on
nx : 

21
( ) ( ) ( )( ) ( )( )

2!
n n n n nF x F x F x x x F x x x       

( 1) 11
( )( )

( 1)!

k k

n nF x x x
k

 


1
1

( )

0

(1 )
( ( ))( )

( 1)!

k
k k

n n n

t
F x t x x x x dt

k


   

 ,                 (6) 

when 1k  , we have a multivariable mean-value theorem

1

0
( ) ( ) ( ( ))( ) ,n n n nF x F x F x t x x x x dt                  (7) 

We use the left rectangular integral rule

1

0
( ( ))( ) ( )( ),n n n n nF x t x x x x dt F x x x                  (8) 

and use ( ) 0F x   to get Newton’s Method (2). By using 

the trapezoidal integral rule 

1

0

1
( ( ))( ) ( ( ) ( ))( ),

2
n n n n nF x t x x x x dt F x F x x x       

substituting ( )F x  by ( )nF y , and using ( ) 0,F x   

Weerakoon and Fernando [7] derived a variant of 

Newton’s method with cubic convergence (3). 
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Now, we apply the quadrature formula

1

0
( ( ))( )n n nF x t x x x x dt       

3
(2 ( ) ( ))( ),

2

n
n n

x x
F x F x x


                                      (9) 

to modify Newton’s method as follows:

1

1

1

( ) ( )

3
[2 ( ) ( )] ( )

2

n n n n

n n
n n n n

y x F x F x

x y
x x F x F F x







  

 

   


             (10) 

The convergence theorem is described and proved as 

follows: 

Theorem  Let the vector function : n nF D R R  be k-

time Fréchet differentiable in a convex set D containing a 

root  of ( )F x and the initial value 
0x be close to  . 

Supposing that ( )F x  is continuous and nonsingular at 

, then, the Newton-type method (10) is cubically 

convergent, and its error equation is 

2 3 4

1 2 3

7
( ) ( )

4
n n ne C C e O e     .                                  (11) 

Proof. Let 
n nx e   and 1 ( )1

( ) ( )
!

k

kC F F
k

  . 

By Taylor’s expansion, and ( ) 0F   , we obtain 

21
( ) ( )( ) ( )( )

2!
n n nF x F x F x         

3 41
( )( ) ( )

3!
n nF x O x       

2 3 4

2 3( )[ ( )]n n n nF e C e C e O e    .                   (12) 

and 
2 3

2 3( ) ( )[ 2 3 ( )]n n n nF x F I C e C e O e     .              (13) 

Then 
1 1 1( ) [ ( ) ] ( )n nF x D e F     ,                                    (14) 

where 
2

2 3( ) 2 3n n nD e I C e C e   . 

The inverse of ( )nD e is given by 

1 2

1 2( )n n nD e I K e K e    ,                                           (15) 

where 
1K  and 

2K  satisfy the definition 

1 1( ) ( ) ( ) ( )n n n nD e D e D e D e I   .                             (16) 

That is 
2 2

2 3 1 2( 2 3 )( )n n n nI C e C e I K e K e I     ,                   (17) 

We have 

              
1 22K C  , 

2

2 2 34 3K C C  . 

So, from the above expressions, we obtain
1 2 2 1

2 2 3( ) [ 2 (4 3 ) ] ( )n n nF x I C e C C e F        .    (18) 

Therefore 
1 2 2

2 2 3( ) ( ) [ 2 (4 3 ) ]n n n nF x F x I C e C C e       

2 3

2 3( )n n ne C e C e   
 

2 2 3 4

2 2 3(2 2 ) ( )n n n ne C e C C e O e     .    (19) 

From the first step of (10), we have 

2 2 3 4

2 3 22( ) ( )n n n ny C e C C e O e     . 

and 

2 2 3

2 3 2

3 3 1
( ) ( 2( ) )

2 2 2

n n
n n n

x y
e C e C C e 


       

2 2 3

2 3 2

3 1
( )

2 2
n n ne C e C C e    

nd   

where 
2 2 3

2 3 2

3 1
( )

2 2
n n n nd e C e C C e    . 

By Toylor’s expansion, we have 

2

2 3

3
( ) ( )( 2 3 )

2

n n
n n

x y
F F I C d C d


      

2 2 3

2 2 3

27
( )[ 3 ( ) ] ( )

4
n n nF I C e C C e O e        (20) 

Furthermore, by (13) and (20), we have 

2

2 3

3
2 ( ) ( ) ( )[2 4 6 ]

2

n n
n n n

x y
F x F F I C e C e


      

2 2

2 2 3

27
( )[ 3 ( ) ]

4
n nF I C e C C e    

2 2

2 2 3

3
( )[ ( ) ]

4
n nF I C e C C e                         (21) 

using (12), (21) and the second step of (10), we obtain 

1

3
[2 ( ) ( )]

2

n n
n n

x y
F x F e 


   

3
[2 ( ) ( )] ( )

2

n n
n n n

x y
F x F e F x


   

2 2 3

2 2 3

3
( )[ ( ) ]

4
n n nF e C e C C e      

2 3

2 3( )( )n n nF e C e C e     

2 3 4

2 3

7
( )[( ) ] ( )

4
n nF C C e O e    . 

Finally, used the same method as (14)-(17), the error 

equation becomes 

2 3 4

1 2 3

7
( ) ( )

4
n n ne C C e O e     .                                                    

This shows that the method (10) is third-order convergent. 

 

III. NUMERICAL EXAMPLES 
 

The iterative method (10) is demonstrated numerically 

by solving some systems of nonlinear equations and 

boundary-value problems of ODE as follows: 

Example 1:  Consider the system of two equations:  

24 2

1 2 2

2 2

1 1 1 2

( 1) 3 1 0

4sin( 1) ln( 1) 0

x
x e x x

x x x x

      


     

                 (22) 

with the initial guess value 
0 (1, 0.5) 'x   , we obtain the 

root of this system of nonlinear equations 

(1.271384307950, 0.880819073102)'   . Table 1 lists 

the numerical results. 
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Table 1: The solutions of the equations (22) using  method 

(10) 

k  ( )

1

kx  ( )

2

kx  2
( )kF x

 
1 1.2621014102538781095 -0.86782226881191724 2.99e-2 

2 1.2713828125389359334 -0.88081755599894030 3.70e-6 

3 1.2713843079501316289 -0.88081907310266101 1.11e-17 

4 1.27138430795013163348 -0.88081907310266102 3.10e-52 

 

The above numerical results agree with the theoretical 

analysis on the convergence and error equation. 

Example 2:  Consider the system of five equations:   
2 2

1 1 2 2 3

2 2 2

2 2 2 1 2 2 3 3 4

2 2 2 2

3 3 3 2 3 3 4 2 1 4 5

2 2 2

4 4 4 3 4 4 5 3 2

2 2

5 5 5 4 5 4 3

( ) 4( )

( ) 8 ( ) 2(1 ) 4( )

( ) 8 ( ) 2(1 ) 4( )

( ) 8 ( ) 2(1 ) 4( )

( ) 8 ( ) 2(1 )

f x x x x x

f x x x x x x x x x

f x x x x x x x x x x x

f x x x x x x x x x

f x x x x x x x

    


       


         
        


       

(23)                                                                                    

where
0 (1.2, 1.2, 1.2, 1.2, 1.2) 'x   is an initial 

approximation value, and (1, 1, 1, 1, 1)'   is the precise 

value of the solution. Tables 2 and 3 list the numerical 

results. 

Table 2: The solutions of the equations (23) using method 

(10) 

k        ( )

1

kx  ( )

2

kx  ( )

3

kx  ( )

4

kx  ( )

5

kx  

1 1.05962237 1.03712640 1.02282883 1.01472761 1.01027794 

2 0.99963831 0.99985606 0.99994459 0.99997874 0.99999188 

3 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 

 

Table 3:  The errors of the  equations (23) using method 

(10) 

k  1 2 3 4 5 

2kx   7.60e-2 3.93e-4 1.08e-11 1.60e-33 1.23e-99 

2
( )kF x

 
2.31e-1 4.10e-4 6.07e-11 4.31e-33 2.55e-99 

 

Example 3:  Consider solving the following boundary-

value problem of ODE: 
3( ) ( ) 0,

(0) 0, (1) 1.

y x y x

y y

  


 
                                                  (24) 

Discretize the nonlinear ODE with the finite difference 

method. Partitioning the interval [0, 1]:  

0 1 2 10 1n nx x x x x       ,
1i ix x h   , 1h n . 

Let 
0 0( ) 0y y x  , 

1 1 1 1( ), , ( )n ny y x y y x   , 

( ) 1n ny y x  . By using the numerical differential 

formula for second derivative 

1 1

2

2
, 1,2, , 1k k k

k

y y y
y k n

h

  
    , we take 10n  , 

and obtain the system of nonlinear equations with nine 

variables: 
2 3

1 2 1

2 3

1 1

2 3

8 9 9

2 0

2 0, 2,3, ,8

2 1 0

k k k k

y y h y

y y y h y k

y y h y

 

    


    
    

 .            (25) 

where 
0 [1,1,1,1,1,1,1,1,1]'y  . We obtain the solutions of 

this problem: 

  (0.10554111990592138, 0.21107048366249555, 

0.316505813937524990,0.421624081569127374, 

0.525992841283952610, 0.628906344657316803, 

0.729332377591977378, 0.825878904047789749, 

0.916792309006096974), and the results for a system of 

nonlinear equations of ODE by using the method are 

shown in Table 4. 

 

Table 4: The errors of the equations (25) using method (6) 

k  1 2 3 4 5 

2kx   1.6e-1 1.4e-4 9.9e-14 7.1e-17 7.1e-17 

2
( )kF x

 
2.1e-2 1.3e-5 9.3e-15 3.2e-42 1.3e-124 

 

IV. CONCLUSION 
 

In this paper, we construct the new iterative method 

based on Newton’s method by the integral interpolation. 

The new iterative method is suitable for solving systems of 

nonlinear equations, and can be used to resolve boundary-

value problems of nonlinear ODEs as well. Through the 

theoretical analysis and the numerical examples, we 

believe that the new Newton-type method with cubic 

convergence is efficient and feasible to solve the systems 

of nonlinear equations. 

 

ACKNOWLEDGMENT 
 

The work is supported by the Science & Technology 

Program of Beijing Municipal Commission of 

Education (No. KM201511417012). 
 

REFERENCES 

 
[1]  J.M. Ortega,  W.G. Rheinboldt, Iterative Solution of Nonlinear 

Equations in Several Variables, Academic Press, New York, 
1970. 

[2]  J.F. Traub, Iterative Methods for the Solution of Equations, 

Prentice-Hall, Englewood Cliffs, New Jersey, 1964. 
[3]  C.T.Kelley, Solving Nonlinear Equations with Newton’s 

Method, SIAM, Philadephia, 2003. 

[4]  M.T.Darvish, A.Barati, A third-order Newton-type method to 
solve systems of nonlinear equations, APPL. Math. Comput. 

187(2007)630-635. 

[5]  M. Frontini, E.Sormani, Third-order methods from quadrature 
formulae for solving systems of nonlinear equations, 

APPL.Math.Comput.149(2004)771-782. 

[6]  M.A. Noor, M. Wasteem, Some iterative methods for solving a 
system of nonlinear equations, J. Computers and Mathematics 

with Applications, 2009, 57(1): 101-106. 

[7]  S.Weerakoon, t.g.i.Fernando, A variant of Newton’s method 
with accelerated third-order convergence, Appl. Math. 

Lett.13(2000), 87-93. 

[8]  H.H.H.Homeier, A modified Newton method with cubic 
convergence: the multivariable case, J. Comput. Appl. Math, 

169(2004)161-169. 

[9]  J.R. Sharma, P. Gupta, An efficient fifth order method for 
solving systems of nonlinear equations, J. Computers and 

Mathematics with Applications, 2014, 67: 591-601. 

[10]  M.T.Darvish, A.Barati, A fourth-order method from quadrature 
formulae to solve systems of nonlinear equations, 

APPL.Math.Comput.188(2007)1678-1685. 

[11]  Hafiz M A, Bahgat M S M. An efficient two-step iterative 
method for solving system of nonlinear equations[J]. Journal of 

Mathematics Research, 2012, 4(4): 28-34 



 
 
 

Copyright © 2015 IJASM, All right reserved 

185 

International Journal of Applied Science and Mathematics 

Volume 2, Issue 5, ISSN (Online): 2394-2894 
 

[12]  Xu Zhang, Jieqing Tan, The fifth-order of three-step iterative 

methods for solving systems of nonlinear equations, 
MATHEMATICA NUMERICA SINICA, 2013,35(3),297-304. 

 

AUTHOR'S PROFILE  
 

Zhongli Liu 
born in 1971, graduated from the Northeast Forestry 

University in China with a bachelor’s degree in 
science and then pursued postgraduate study of 

Applied Mathematics at the North China University 

of Technology before being granted the master’s 
degree. He is currently an associate professor at 

Beijing Union University teaching Advanced Mathematics. 

 


	PointTmp
	OLE_LINK69
	OLE_LINK70
	OLE_LINK82
	OLE_LINK83

